
Aligning Musical Audio with Symbols:

A Case Study in Western Classical Music∗

Iman S. H. Suyoto and Alexandra L. Uitdenbogerd

School of Computer Science and Information Technology, RMIT

GPO Box 2746V, Melbourne, Victoria 3001, Australia

[iman.suyoto,sandrau]@rmit.edu.au

Abstract
Searching recorded music using musical queries
such as note sequences is a difficult problem due to
the limitations of transcription technology. Thus,
most current music retrieval systems use collections
in symbolic rather than audio format. This paper
is about an early investigation in the problem of au-
dio music retrieval using symbolic data. Our novel
method consists of five stages: transcription (of au-
dio to symbolic data), noise removal, bass-part ex-
traction, standardisation, and alignment. Our ex-
perimental results show that it is possible to match
audio music with its symbolic equivalent represen-
tation.

1 Introduction
The way that users find music has changed consid-
erably in the last decade, with much music avail-
able on-line. While music is often located by artist
name, song title, or lyrics, there are many times
when users wish to find a particular tune by con-
tent.

In the field of music information retrieval, the de-
sired objective is the ability to retrieve music from
an audio collection given a query, representing a
portion of the music, that is either sung, played,
or otherwise encoded. To date, most practical sys-
tems that retrieve music given a melody fragment
as a query, are restricted to music collections that
are in a symbolic format such as MIDI. The ma-
jor difficulty lies in the automatic transcription of
recorded music, due to the complexity of the audio

∗This paper is currently in submission to DASFAA 2007.

signal when there is more than one note sounding
simultaneously, multiple musical instrument tim-
bres, and a complex acoustic environment.

There have been some previous attempts to solve
the audio retrieval problem. Notably, the Shazam1

system successfully uses audio signatures to retrieve
specific recordings regardless of the audio quality
of the version presented to the system [20]. The
system does not find cover or other alternate ver-
sions of music, however. Other attempts to re-
trieve audio have exploited long-term structure, as
represented by variation in loudness or volume [7]
or timbral texture [2]. This allowed multiple ver-
sions to be matched. However, the techniques
were tested on collections of less than one hundred
pieces. Matching MIDI files with (monophonic)
hummed melody queries has been shown to be more
successful [4, 9, 10, 15].

In this work we test the feasibility of finding poly-
phonic audio recordings of music given a symbolic
representation. Instead of using low-level audio fea-
tures such as Mel-frequency cepstral coefficients,2

we use the high-level music feature called pitch.
In brief, our technique makes use of automatic

transcription and dynamic programming. It is fur-
ther described in Section 2. How we evaluate the
effectiveness of our approach is discussed in Sec-
tion 3. In Section 4, we discuss our experimental
setup, and the results are presented in Section 5.
We finally present our conclusions and suggestions
for future work in Section 6.

We discovered that for a collection of about 2 000
pieces, the rank of most queries is quite acceptable

1See http://www.shazam.com.
2Audio features are not explained in this paper. They

are described elsewhere [1, 12, 16].

1

Figure 1. J. S. Bach’s “BWV 1007 Prelude.”

when given a query representing the entire musical
work. Effectiveness degrades as the query shortens,
however. Nevertheless, we have shown that it is
possible to use current transcription technology to
retrieve answers to queries.

2 Matching
The matching process is composed of five stages:
transcription (of audio to symbolic data), noise re-
moval, bass-part extraction, standardisation, and
alignment. These are discussed below.

Transcription
In the transcription stage, the audio files in the
collection are transcribed so that the symbolic
data are obtained.The transcriber we use is TS-
AudioToMidi 3.30.3 The transcription results are
saved in the Standard MIDI file format.4.

State-of-the-art transcription technology still
produces musical symbols with much noise in the
form of extraneous notes, particularly when the au-
dio consists of more than one timbre and is poly-
phonic. As an example, one of the tracks in our
collection is J. S. Bach’s “BWV 1007 Prelude” per-
formed by Carrai. The first two bars of the track
are shown in Figure 1. The transcription result is
shown in Figure 2. It contains many extraneous
notes.

Noise removal
As mentioned in Section 2, current transcription
technology still leaves much noise in its symbolic
output. Therefore, we need a noise removal proce-
dure to help us generate a retrievable sequence.

We use a noise removal heuristic that depends on
the statistics of a tune, particularly that of pitch.

3See http:// audioto.com/eng/ aud2midi.htm.
4See http://www.midi.org/ about-midi/ abtmidi2.shtml .

Figure 2. The first few notes of the transcrip-
tion result of J. S. Bach’s “BWV 1007 Prelude”
performance by Carrai that corresponds to the first
two bars of the score shown in Figure 1. Notes are
quantised to semiquavers/sixteenth notes for read-
ing comfort.

The result of this process is not intended for listen-
ing purposes but for producing “clean” symbolic
sequences that can be used for retrieval.

The first step in filtering a tune is removing notes
that are perceived as “too soft.” A softness thresh-
old Vt, where Vt is a valid MIDI velocity value, is
used here. Any notes softer than Vt are discarded.
The next step is building a histogram of pitches.
As an example, the histogram showing the number
of soundings of pitches in the transcription result
of J. S. Bach’s “BWV 1007 Prelude” performed by
Carrai (excerpt shown in Figure 2) is plotted in Fig-
ure 3. By building a histogram, the pitch median
can be determined. Let us call the pitch median
P̃ . For each pitch p, if p > P̃ , it is removed. The
filtered result is shown in Figure 4.

This heuristic was developed through observa-
tion of typical transcription results. Harmonics due
to instrument timbre and reverbation effects tend
to lead to additional notes being transcribed along
with the actual melody pitch. The problem of find-
ing melody lines is still only partially solved.5

Bass-part extraction
From every transcribed tune, a monophonic se-
quence that represents the tune is extracted. Past
work [19] shows that the all-mono algorithm is

5Research on this area is active as described in various
work [6, 11, 13] and elsewhere.

2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C7C6C5C4G#3C3C2

N
um

be
r o

f s
ou

nd
in

gs

Pitches

Figure 3. Pitch distribution of the transcription
result of J. S. Bach’s “BWV 1007 Prelude” per-
formed by Carrai. G#3 is the median. Only notes
with MIDI velocities of equal to or greater than Vt

are included.

Figure 4. The filtered result of J. S. Bach’s
“BWV 1007 Prelude” performance by Carrai. Note
that although as shown in Figure 2 the first note is
an F#3, it does not appear here because it is softer
than Vt.

the most effective melody extraction technique for
retrieval purposes. When there is a note or a chord
starting to sound, the note having the highest pitch
becomes “the melody note.” If there is a note m
of length lm sounding at tm and another note n
sounding at tn so that lm + tm ≥ tn, lm will be-
come l′m ← lm − (tn − tm), that is, note overlaps
are removed. For our experiments, we modify the
all-mono algorithm so that instead of taking the
highest pitch, we take the lowest pitch. In Al-
gorithm 1 we show the bass-part extraction algo-
rithm we use (note duration information however is
not extracted as this is not used in post-extraction
stages). This process is applied to tunes in the
collection and also the query tune. The bass part
extracted from Figure 4 is shown in Figure 5.

The rationale of modifying the all-mono algo-
rithm is that high pitches are not sufficiently reli-
able since most extraneous notes are high in pitch.
Also, in classical music (particularly from older
periods such as Baroque), the lower pitches are
quite melodic, for example, J. S. Bach’s Inventions
(Baroque period), Mozart’s piano sonatas (Classi-
cal period), and Chopin’s fantasias (Romantic pe-
riod), compared to three-chord blues tunes, where

Figure 5. The bass-line extraction result of the
tune shown in Figure 4.

the chord sequence (and thus the bass line) follows
a common pattern.

Standardisation
Once a monophonic “melody” has been acquired,
we can generate a string that represents it. The
idea is to match the string that represents the query
tune with the sequences that represent the tunes in
the collection. To facilitate ranking, there must be
a measure that reflects how similar two matched
strings are. This is achieved using the score re-
turned by an approximate matching function.

A standardisation that has been shown to work
well is the directed modulo-12 standardisation. In
this standardisation, a note is represented as a
value R which is the interval between the current
note and its previous note, scaled to a maximum of
12 semitones (one octave) [17, 18]:

R ≡ d(1 + ((∆− 1) mod 12)) (1)

where ∆ is the interval between a note and its previ-
ous note (absolute value) and d is +1 if the previous
note is lower than the current note, −1 if higher,
and 0 if otherwise.

Using the directed modulo-12 standardisation,
the melody shown in Figure 5 is represented as
〈+2,−2, +7,−7, +9,−9, 0,+9〉.

The clear advantage of using this standardisa-
tion is transposition-invariance. For example, the
melodies C4-E4-G4 and G3-B3-D4 match perfectly,
as both are represented as 〈+4, +3〉.

Alignment
For the alignment phase of our approach, we ap-
ply dynamic programming to the pitch sequences,
a technique that has been previously applied to
symbolic music matching [4, 17, 19] as well as au-
dio [2, 7]. To investigate the ability of manu-
ally constructed symbolic sequences being matched
with transcription-of-audio sequences, we use global
alignment since the query and the target tune(s)

3

Algorithm 1. A note is expressed as a tuple n = 〈p, o〉 where p is the pitch and o is the onset time. N

is the array of notes. The base index is 0. P is the sequence of the representative bass part. “πx” is the
relational operator for projecting the x attribute.

1. Sort N by ascending onset time as the first sort key and descending pitch descending as the second
sort key.

2. For i in 0 . . . |N| − 2: (πoni 6= πoni+1)→ append πpni to P .

3. Append πpn|N|−1 to P .

(Steps 2 and 3 takes the lowest note at any onset time.)

4. Return P .

are complete albeit different renditions of the same
tune. However, we also inspect the possibility of
using local alignment to find out whether it is pos-
sible to issue a query in the form of a short piece
of the target tune.

Suppose we have two strings, s and q. Algo-
rithm 2 is used to calculate the global alignment
between them whereas Algorithm 3 is used to cal-
culate the local alignment between them. We use
both algorithms in our experiment (see Section 4)
with sequences of directed modulo-12 representa-
tion (see Eq. 1) of the tunes as the strings.

3 Retrieval Performance Evalu-
ation

The scores generated by alignment are used for
ranking the similarity of the tunes in the collec-
tion for a particular query. From here, we can
measure the effectiveness of the approach we pro-
pose. The widely-known precision information re-
trieval measure [3] is used and it is defined as
P ≡ |Rel ∩Ret|/|Ret| where P is precision, Rel

is the set of relevant tunes, and Ret is the set of
retrieved tunes. In particular, we report 〈PN 〉, that
is the mean precision in the top N answers. To pro-
vide a clearer view, we also show RN , the number
of relevant answers in the top N answers.

4 Experiment
Our collection contains tunes from the Magnatune
classical music collection6 (as at 28 April 2005)
stored as MP3 (MPEG Layer 3)7 files. It con-
tains multiple versions of some pieces, such as
J. S. Bach’s “Suite I for Cello Solo” (BWV 1007),
performed by Phoebe Carrai, Antonio Meneses,
and Gonzalo X Ruis, respectively.

We used the default setting of TS-AudioToMidi
when transcribing the MP3 files. Some files could
not be processed, leaving us with 1 808 MIDI files
of transcriptions to work with.

For our query set, we gathered the MIDI versions
of some of the covers in the Magnatune collection.
The sources of the symbolic queries are the Mutopia
Project,8 Kern Scores,9 and MuseData.10 In total,
we have 34 queries that have relevant answers in
the collection. They are specified in Table 1 but we
discuss the properties of some queries below.

We have two queries for “BWV 870 Prelude”
(b870_p_md1 and b870_p_mdp) and also two for
“BWV 870 Fugue” (b870_f_md1 and b870_f_mdp).
The queries ending with md1 are optimised for
printing and those ending with mdp are optimised
for listening. We intend to see how effective they
are in retrieving the target answers. “BWV 1042”
in the collection is a polyphonic work whereas the

6See http://www.magnatune.com/genres/ classical/ .
7See http://www.iis.fraunhofer.de/ amm/ techinf/

layer3/ .
8See http://www.mutopiaproject.org .
9See http:// kern.humdrum.net .

10See http://www.musedata.org .

4

Algorithm 2. Global alignment between the strings s and q. The base index is 0. M is the
match/mismatch function (M(x, x) means a match and M(x, y)|x6=y means a mismatch) and I is the
insertion/deletion score. M(x, x) ≥M(x, y)|x6=y ≥ I.

1. Data structure preparation.

1. Construct a matrix with (|s|+ 1) rows and (|q|+ 1) columns. Let us call a cell Di,j .

2. D0,0 ← 0.

3. Di,0 ← iI ; i = {1 . . . |s|}.

4. D0,j ← jI ; j = {1 . . . |q|}.

2. Score calculation.

1. For i in 1 . . . |s|:

1. For j in 1 . . . |q|:

1. Di,j ← max







Di−1,j + I
Di,j−1 + I
Di−1,j−1 + M(si−1, qi−1)

.

3. Return D|s|,|q|.

Algorithm 3. Local alignment between the strings s and q. The base index is 0. M is the
match/mismatch function (M(x, x) means a match and M(x, y)|x6=y means a mismatch) and I is the
insertion/deletion score. M(x, x) ≥M(x, y)|x6=y ≥ I.

1. Data structure preparation.

1. Construct a matrix with (|s|+ 1) rows and (|q|+ 1) columns. Let us call a cell Di,j .

2. D0,0 ← 0.

3. Di,0 ← 0; i = {1 . . . |s|}.

4. D0,j ← 0; j = {1 . . . |q|}.

2. Score calculation.

1. For i in 1 . . . |s|:

1. For j in 1 . . . |q|:

1. Di,j ← max















0
Di−1,j + I
Di,j−1 + I
Di−1,j−1 + M(si−1, qi−1)

.

3. Return max(Di,j); i ∈ {1 . . . |s|} , j ∈ {1 . . . |q|}.

5

Table 1. The queries and the number of relevant covers in the collection (C). (KS: Kern Scores,
MD-1: MuseData [optimised for printing], MD-P: MuseData [optimised for listening], MP: the Mutopia
Project.)

Query Title Source C
b1011_c BWV 1011 Courante KS 3
b1011_s BWV 1011 Sarabande KS 3
cor_o1n7_1 Corelli, Trio Sonata Op. 1 No. 7 in C Maj. (Mvt. 1) KS 1
cor_o1n7_2 Corelli, Trio Sonata Op. 1 No. 7 in C Maj. (Mvt. 2) KS 1
cor_o1n7_3 Corelli, Trio Sonata Op. 1 No. 7 in C Maj. (Mvt. 3) KS 1
duf_acb Dufay, Adieu Ces Bons Vins De Lannoys KS 1
jop_stoptime Joplin, Stoptime Rag KS 1
k545_1 K 545 Movement 1 KS 1
k545_2 K 545 Movement 2 KS 1
k238 K 238 KS 1
b870_f_md1 BWV 870 Fugue MD-1 1
b870_p_md1 BWV 870 Prelude MD-1 1
b870_f_mdp BWV 870 Fugue MD-P 1
b870_p_mdp BWV 870 Prelude MD-P 1
b1007_a BWV 1007 Allemande MP 3
b1007_c BWV 1007 Courante MP 3
b1007_g BWV 1007 Gigue MP 4
b1007_m BWV 1007 Menuets MP 3
b1007_p BWV 1007 Prelude MP 3
b1007_s BWV 1007 Sarabande MP 3
b1010_a BWV 1010 Allemande MP 3
b1010_b1 BWV 1010 Bouree I MP 3
b1010_b2 BWV 1010 Bouree II MP 3
b1010_c BWV 1010 Courante MP 3
b1010_g BWV 1010 Gigue MP 3
b1010_p BWV 1010 Prelude MP 3
b1010_s BWV 1010 Sarabande MP 3
b1042_ad BWV 1042 Adagio MP 1
b1042_al BWV 1042 Allegro MP 1
b1042_aa BWV 1042 Allegro Assai MP 1
b846_f BWV 846 Fugue MP 1
b846_p BWV 846 Prelude MP 1
b860_f BWV 860 Fugue MP 1
b860_p BWV 860 Prelude MP 1

queries (b1042_ad, b1042_al, and b1042_aa) are
monophonic.

“BWV 846” and “BWV 860” in the collection are
polyphonic piano pieces. The same case is also for
the first two movements of Mozart’s “K 545” in the
collection. The queries (b846_p, b846_f, b846_p,
b846_f, k545_1, and k545_2) are also polyphonic.

Joplin’s “Stoptime Rag” and Scarlatti’s “K 238”
in the collection uses the harpsichord. Dufay’s
“Adieu Ces Bons Vins De Lannoys” in the col-
lection uses a lute. Corelli’s “Trio Sonata Opus 1
No. 7 in C Major” in the collection is performed by
an orchestra. All are polyphonic and so are the
corresponding queries (jop_stoptime, duf_acb,

6

cor_o1n7_1, cor_o1n7_2, and cor_o1n7_3 respec-
tively).

“BWV 1007 Menuets” consist of two parts. In
our audio collection, there are three covers and
all of them play the two parts in a single file.
We obtained the query with both parts separated.
They were concatenated to form b1007_m. A sim-
ilar case happened with “BWV 1010 Bourees,”
which also consist of two parts, and there are also
three covers with all of them playing the two parts
as a single track. However, for this one, there
were two queries, one for each part (b1010_b1 and
b1010_b2).

For both the audio covers and the queries,
“BWV 1007” is mostly monophonic while
“BWV 1010” and “BWV 1011 Courante” are
mostly polyphonic (“BWV 1011 Sarabande” is
monophonic).

For filtering, we used Vt = 48 (see Section 2).
This was applied to both the tunes in the collec-
tion and the query tunes. We tested four alignment
procedures:

• Global alignment (see Algorithm 2) on whole
tunes and whole queries. We call this Sbdg.

• Local alignment (see Algorithm 3) on whole
tunes and whole queries. We call this Sbdl.

• The query tunes were truncated to a maximum
of 50 symbols and matched using local align-
ment (see Algorithm 3). We call this Sbdl50.

• The query tunes were truncated to a maximum
of 100 symbols and matched using local align-
ment (see Algorithm 3). We call this Sbdl100.

The alignment parameters we use are M(x, x) =
10, M(x, y)|x6=y = −1, and I = −2 (see Section 2).

5 Results and Analysis
The results for our experiments with the meth-
ods mentioned in Section 4 are shown in Fig-
ure 6. Based on the mean precision values in
the figure, the most effective method is Sbdg, fol-
lowed by Sbdl, both achieving P1 = 0.412, and
then Sbdl100 (P1 = 0.324), and finally Sbdl50

(P1 = 0.176). Sbdg is just marginally more effec-
tive than Sbdl (P10 is equal to 0.097 for Sbdg and
0.076 for Sbdl), but none is superior in terms of

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

 20 15 10 5 1

M
ea

n
pr

ec
is

io
n

Number of tunes retrieved

Sbdg
Sbdl

Sbdl50
Sbdl100

Figure 6. The mean precision curves for Sbdg,
Sbdl, Sbdl50, and Sbdl100.

efficiency. In terms of RN , using Sbdg, overall 18
queries successfully retrieved an answer in the top
10 and 20, whereas with Sbdl, overall 16 queries
successfully retrieved an answer in the top 10 and
20. Using Sbdl50, overall 9 queries retrieved an
answer in the top 10, and 11 in the top 20 of re-
turned results, whereas with Sbdl100, overall 16
queries retrieved an answer in the top 10, and 18 in
the top 20. The PN and RN values tell that shorter
queries tend to sacrifice effectiveness.

Symbolic data that is optimised for listening
serve as better queries than those optimised for
printing. Print versions have less details thus are
more ambiguous. For example, in listening ver-
sions of the MIDI files, a trill (fast alteration be-
tween two nearby notes) is encoded as the notes
a player would usually play. From our experi-
ence as musicians, Western classical music some-
what allows stricter interpretation. In contrast to,
say, jazz performance, Western classical performers
typically try to perform the repertoires as closely
as how they were performed originally; for exam-
ple, the use of the piano sustain pedal when per-
forming J. S. Bach’s harpsichord composition is
generally frowned upon, in the spirit of emulat-
ing harpsichords. As mentioned in Section 4, in
our query set, there were both print (b870_p_md1
and b870_f_md1) and listening (b870_p_mdp and
b870_f_mdp) versions of “BWV 870.” Using Sbdg,
the queries b870_p_md1 and b870_f_md1 retrieve
the target tunes at ranks 313 and 63 respectively,
whereas the b870_p_mdp and b870_f_mdp at ranks
9 and 30. The same situation also occurs for Sbdl.
b870_p_md1 and b870_f_md1 retrieve the target
tunes at ranks 404 and 52, whereas b870_p_mdp

and b870_f_mdp at ranks 24 and 36.

7

The retrieval performance for “BWV 1007” was
among the best. Using Sbdg, all of the queries
produced the first correct answer in the first place,
except b1007_m, which produced the first correct
answers at rank 3. All of the queries retrieved at
least two correct answers in the top 10. They also
retrieved all correct answers in the top 20 except
b1007_m, which only retrieves two of them (at ranks
3 and 4, the other one at rank 34). Using Sbdl,
all of the queries produced the first correct answer
at the first place with no exception. Only b1007_s

failed to retrieve all correct answers in the top 20
(but close enough; it retrieved the last correct an-
swer at rank 22).

The polyphonic piano pieces “BWV 846,”
“BWV 860,” and “K 545” were also retrieved in
the first place using Sbdg. The retrieval perfor-
mance Sbdl is the same except for b846_f, which
produces the correct answer at rank 2. These good
results may be partly due to fairly clean transcrip-
tions.

The retrieval performance for “BWV 1010” is
only good for b1010_a and b1010_p. For b1010_a,
the correct answers were retrieved at ranks 1, 7, and
93 (using Sbdg) and 2, 16, and 27 (using Sbdl).
For b1010_p, all the three covers were retrieved in
the top 3. For b1010_c and b1010_s, both failed
to retrieve answers in the top 20 using any of the
methods. b1010_b2 with Sbdl however retrieved
a correct answer in the first place.

Retrieval performance was poor for duf_acb,
jop_stoptime, b1042_ad, b1042_al, and
b1042_aa using all methods. All of them
could not retrieve a correct answer in the top 90.
b1042_ad could not even retrieve a correct answer
in the top 1 000. This is actually not surprising
since the query contains the high pitches and lacks
the “bass part.”
b1011_c performed poorly but b1011_s retrieved

the correct answer in the first place using all meth-
ods.

Referring to “BWV 1007” and “BWV 1011 Sara-
bande”, it should be noted that even though an
audio performance is monophonic, its transcription
result is polyphonic (refer again to Figures 1 and 2).

All the mostly or fully polyphonic audio, with
the exception of the piano pieces, were hard to re-
trieve. Our simple filtering heuristic still cannot
filter out the noise from the transcription results
of these pieces well. However, where actual notes

and extraneous notes are separated well by the me-
dian of the overall pitch distribution, this makes
low pitch audio tend to be retrieved more easily.

The results for Sbdl and Sbdg show that it
is possible to align a whole audio music file with
its symbolic equivalent representation by using dy-
namic programmign techniques that had previ-
ously been shown effective for aligning symbolic se-
quences. However, using the same techniques with
short queries does not yield the same level of ef-
fectiveness. This still requires further experimen-
tation.

6 Conclusions and Future
Work

This paper describes our exploratory work in
symbolic-audio music cross-matching using dy-
namic programming and western classical music.
The results of our experiment show that:

• Automatic audio transcription results need to
be filtered in order to be useful for matching.

• It is possible to match audio with symbolic mu-
sic.

• Long queries are more effective than short
ones.

Extraneous notes included in transcription re-
sults seem to degrade retrieval effectiveness. As
they are typically highly pitched, removing those
notes using the median of the pitch distribution
only works well when they are separated well
enough from the correctly transcribed notes (by
the median). As such, a different technique to work
with musical pieces where the correctly transcribed
notes and the extraneous ones are not well sepa-
rated needs to be devised. Using a heuristic that
recognises melody lines accurately may yield better
results. This is supported by the evidence in our
experiment that fairly clean transcribed audio can
be retrieved by its equivalent symbolic versions.

We plan to explore this technique on music of
other genres to see the scope of its applicability.

8

7 Acknowledgements
We thank Justin Zobel for obtaining TS-
AudioToMidi and proof-reading the draft version
of this paper and Steven Garcia for his input on
automating the transcription process.

References
[1] J.-J. Aucouturier and F. Pachet. Music simi-

larity measures: What’s the use? In M. Fin-
gerhut, editor, Proceedings of the Third In-
ternational Conference on Music Information
Retrieval, pages 157–163, Paris, France, Oct.
2002. IRCAM-Centre Pompidou.

[2] J.-J. Aucouturier and M. Sandler. Using long-
term structure to retrieve music: Representa-
tion and matching. In Downie and Bainbridge
[5], pages 1–2.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. ACM Press, New York,
USA, 1999.

[4] R. B. Dannenberg, W. P. Birmingham,
G. Tzanetakis, C. Meek, N. Hu, and B. Pardo.
The Musart testbed for query-by-humming
evaluation. In Hoos and Bainbridge [8], pages
41–47.

[5] J. S. Downie and D. Bainbridge, editors. Pro-
ceedings of the Second International Sympo-
sium on Music Information Retrieval, Bloom-
ington, USA, Oct. 2001.

[6] J. Eggink and G. J. Brown. Extracting melody
lines from complex audio. In C. L. Buyoli and
R. Loureiro, editors, Proceedings of the Fifth
International Conference on Music Informa-
tion Retrieval, pages 84–91, Barcelona, Spain,
Oct. 2004. Universitat Pompeu Fabra.

[7] J. Foote. Arthur: Retrieving orchestral mu-
sic by long-term structure. In D. Byrd,
J. S. Downie, T. Crawford, W. B. Croft,
and C. Nevill-Manning, editors, Proceedings of
the First International Symposium on Music
Information Retrieval, Plymouth, USA, Oct.
2000.

[8] H. H. Hoos and D. Bainbridge, editors. Pro-
ceedings of the Fourth International Confer-
ence on Music Information Retrieval, Balti-
more, USA, Oct. 2003. Johns Hopkins Univer-
sity.

[9] N. Hu and R. B. Dannenberg. A compari-
son of melodic database retrieval techniques
using sung queries. In G. Marchionini and
W. Hersh, editors, Proceedings of the Second
ACM/IEEE-CS Joint Conference on Digital
Libraries, pages 301–307, Portland, USA, July
2002.

[10] D. Mazzoni and R. B. Dannenberg. Melody
matching directly from audio. In Downie and
Bainbridge [5], pages 17–18.

[11] R. P. Paiva, T. Mendes, and A. Cardoso. On
the detection of melody notes in polyphonic
audio. In Reiss and Wiggins [14], pages 175–
182.

[12] E. Pampalk, A. Flexer, and G. Widmer. Im-
provements of audio-based music similarity
and genre classification. In Reiss and Wiggins
[14], pages 628–633.

[13] G. E. Poliner and D. P. W. Ellis. A classifi-
cation approach to melody transcription. In
Reiss and Wiggins [14], pages 161–166.

[14] J. D. Reiss and G. A. Wiggins, editors. Pro-
ceedings of the Sixth International Conference
on Music Information Retrieval, London, UK,
Sept. 2005. Queen Mary, University of London.

[15] J. Shifrin and W. P. Birmingham. Effec-
tiveness of HMM-based retrieval on large
databases. In Hoos and Bainbridge [8], pages
33–39.

[16] P. Somerville and A. L. Uitdenbogerd. Clas-
sification of music based on musical instru-
ment timbre. In Proceedings of the Fourth
Australasian Conference on Knowledge Dis-
covery and Data Mining, pages 173–188, Syd-
ney, Australia, Dec. 2005.

[17] I. S. H. Suyoto and A. L. Uitdenbogerd. Effec-
tiveness of note duration information for music
retrieval. In L. Zhou, B. C. Ooi, and X. Meng,
editors, Proceedings of the Tenth International

9

Conference on Database Systems for Advanced
Applications, pages 265–275, Beijing, China,
Apr. 2005. Springer-Verlag.

[18] A. L. Uitdenbogerd. Music Information Re-
trieval Technology. PhD thesis, School of
Computer Science and Information Technol-
ogy, RMIT, Melbourne, Australia, 2002.

[19] A. L. Uitdenbogerd and J. Zobel. Melodic
matching techniques for large music databases.
In D. Bulterman, K. Jeffay, and H. J. Zhang,
editors, Proceedings of the 1999 ACM Mul-
timedia Conference, pages 57–66, Orlando,
USA, Nov. 1999.

[20] A. Wang. An industrial-strength audio search
algorithm. In Hoos and Bainbridge [8], pages
7–13. Invited talk.

10

