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Abstract

An important goal of music retrieval research is
the successful retrieval of music recordings using
note-based queries. In this report, we demonstrate
the feasibility of searching for recorded music by
using a symbolic version of the same work as a
query. Our approach makes use of the longest
common subsequence algorithm to match auto-
matically transcribed musical audio with a sym-
bolic rendition of the same work. Longest common
subsequence yields the best results when match-
ing is applied to an absolute pitch representation
and the score is normalised by the answer length.
About 90% of queries returned a relevant answer
in the top 10, and precision at 1 was about 80% for
a collection of 1 808 recordings of western classical
music—a substantial improvement (80%) on previ-
ous techniques.

1 Introduction

The ability to find music that is in the form of
a recorded performance, when the query consists
of notes, has thus far been elusive, or limited
at best. However, several promising alternatives
have arisen, such as cover version detection in au-
dio using feature matching of whole recorded ver-
sions [Gómez and Herrera, 2006], and finding spe-
cific recordings via a noisy sample of the record-
ing [Wang, 2003].

Our approach has been to consider the case of
a query consisting of a symbolic rendition of the
desired piece, and a collection consisting of typical
commercial-quality audio recordings.

In our previous work [Suyoto and
Uitdenbogerd, 2007], we applied velocity- and
pitch-based filtering to notes in the automatic
transcriptions, and then matched the lowest part
extracted from both the query and the transcribed
works in the collection—on the assumption that
low frequency transcribed notes are more likely to

be real notes than harmonics. The matching was
most successful when using global alignment on
relative pitch representations (directed modulo
12) of the note sequences. This approach worked
well for pieces that were mostly monophonic, and
some that were largely monotimbral, but failed for
a substantial proportion of the query set.

In this work, we continue to investigate match-
ing polyphonic audio music with its symbolic
equivalent. In brief, our current technique em-
ploys the longest common subsequence (LCS) al-
gorithm [Gusfield, 1997, pp. 227–228]. This is de-
scribed in more detail in Section 3. In Section 4,
our experimental setup is described with the re-
sults shown in Section 5. Conclusions and sugges-
tions for future work are discussed in Section 6.

As an overview, our previous approaches us-
ing global and local alignments on relative pitch
sequences [Suyoto and Uitdenbogerd, 2007] only
enabled about 50% of the queries to yield a rele-
vant answer in the top 10 returned results, with
precision at 1 at around 40%. Normalisation of
the longest common subsequence scores between
absolute pitch sequences using the answer length
is proven to be more effective, with about 90%
queries yielding a relevant answer in the top 10
and precision at 1 of about 80%.

Accompanying materials for this report can
be found at http://mirt.cs.rmit.edu.au/

pubs/sy/.

2 Related work

We are unaware of other work besides ours that at-
tempts this precise problem. Polyphonic matching
of symbolic queries and collection, and audio to
audio matching are not directly comparable. The
work by Gómez and Herrera [2006] on cover ver-
sion detection had accuracy at around 50% with
a collection of just 90 pieces, but the problem is
likely to be harder than matching a perfect sym-
bolic representation to an audio one. We have ob-
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served that automatically transcribed pieces differ
markedly from each other, that is, the “noise” that
is transcribed is not consistent across versions of
the same work, despite having the same instru-
mentation. A similar problem with audio-to-audio
matching is also discussed in Marolt [2006], but
this makes use of a melody-based representation.
The collection consisted of 1 820 pieces with 36
of them as the queries. Out of the devised ap-
proaches, the most effective one achieved 27% of
hits being in the top 5 returned answers.

The Shazam system1 retrieves specific record-
ings that match the same version of the song
fed as the query, although the audio quality is
different [Wang, 2003]. The system uses audio
signatures. The limitation of the system is that
it does not find cover versions of the query
music. There are other attempts to find cover
versions by using long-term structure, such as
variation in loudness or volume [Foote, 2000]
or timbral texture [Aucouturier and Sandler,
2001, 2002]. Those techniques have only been
tested on collections of less than one hun-
dred pieces, however. Works by Dannenberg
et al. [2003], Hu and Dannenberg [2002],
Mazzoni and Dannenberg [2001], and Shifrin
and Birmingham [2003] show that matching MIDI
files with monophonic hummed queries is more
successful.

Shalev-Shwartz et al. [2002] attempted a prob-
lem of matching polyphonic audio collection with
monophonic symbolic queries. Their collection
consisted of 832 opera performances with orches-
tra accompaniment. The length of each perfor-
mance was one minute. (To contrast with our ex-
periment, the pieces in our collection are not cut to
any length.) Their technique makes use of a prob-
abilistic approach to align the polyphonic audio
with the monophonic symbolic queries. Temporal
and spectral variations are used for matching. The
method was tested with 50 queries with three dif-
ferent query lengths: 5 seconds, 15 seconds, and
25 seconds. With 25-second queries, average preci-
sion of 95% was achieved.

There has been a previous attempt at apply-
ing LCS to monophonic music matching [Guo and
Siegelmann, 2004]. In that work, the LCS algo-
rithm is modified to anticipate expansion and con-
traction. (In our work here, we do not modify
the LCS algorithm.) The queries were produced
by randomly choosing a subset of the collection
and manipulating the songs in it. That was done
by stretching the songs, shortening and length-
ening randomly chosen notes (to simulate rhyth-
mic inaccuracies), and inserting and deleting ran-
dom notes. The best result—almost 90% of cor-

1See http://www.shazam.com.

rect answers ranked top 5—was achieved when
the queries were fractions of original songs with
randomly inserted notes.

Similarly to our previous work [Suyoto and
Uitdenbogerd, 2007], we do not use any low-level
audio features for similarity calculation such as
Mel-frequency cepstral coefficients.2 Instead, we
use the high-level music feature called pitch.

3 Matching

The matching process comprises three stages: tran-
scription (of audio to symbolic data), standardisa-
tion, and alignment. These are discussed below.

3.1 Transcription

In this stage, symbolic data is obtained through
the transcription of audio files using TS-
AudioToMidi 3.30.3 The transcription produced is
stored in Standard MIDI file format.4

Noise in the form of extraneous notes is pro-
duced even with state-of-the-art transcription tech-
nology. This is caused by the difficulty of transcrib-
ing music produced by instruments whose timbre
contains many harmonic components. This also
makes polyphonic music more difficult to tran-
scribe than monophonic music, in which the as-
sumption of a single note at a time allows the fun-
damental frequency to be selected as “the note.”

To illustrate the problem, we use one of the
tracks in the collection used in our experiment, that
is J. S. Bach’s “BWV 1007 Prelude” performed by
Carrai. Its first two bars are shown in Figure 1,
and its transcription result is shown in Figure 2. As
clearly seen in Figure 2, there are many extraneous
notes.

3.2 Standardisation

Standardisation is the process of generating a
string that represents a particular tune. A string
representation allows a query and answers to be
matched using approximate string matching tech-
niques [Uitdenbogerd and Zobel, 1999, Suyoto and
Uitdenbogerd, 2005].

Our previous work [Suyoto and Uitdenbogerd,
2007] uses the directed modulo-12 standardisation.
This belongs to the class of representations that
encode pitches as relative values (included in this
class are contour standardisations) [Uitdenbogerd,

2This report does not explain audio features. They are
described elsewhere [Aucouturier and Pachet, 2002, Logan
and Salomon, 2001, Pampalk et al., 2005, Somerville and
Uitdenbogerd, 2005].

3See http://audioto.com/eng/aud2midi.htm.
4See http://www.midi.org/about-midi/abtmidi2.

shtml.
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Figure 1: J. S. Bach’s “BWV 1007 Prelude.”

Figure 2: The transcription result of J. S. Bach’s “BWV 1007 Prelude” by Carrai for the bars shown in Figure 1.

For reading comfort, notes are quantised to semiquavers/sixteenth notes.

2002, pp. 78–86]. In this work, we use limited ab-
solute pitch standardisation. In this standardisation,
we encode pitches as absolute values. A note is
represented as its pitch name. The idea is sug-
gested in Uitdenbogerd [2002, pg. 81] and modi-
fied so that the octave is not retained. For example,
the melody shown in Figure 3 is represented as “C
G A C G# B D”.

In the case of chords, we do not use any
melody extraction algorithm like in previous
work [Uitdenbogerd and Zobel, 1999, Suyoto and
Uitdenbogerd, 2005, 2007]. Instead, the notes are
sorted ascendingly by pitch. For example, the
chord shown in Figure 4 is represented as “F A
C”. This is done because LCS is used, which does
not penalise extraneous notes. The full presence of

chords maximises the chance to match more sym-
bols.

The disadvantage of this standardisation is
that the string representation is not transposition-
invariant. Therefore, in the alignment process,
transposition is incorporated as part of match-
ing. This issue is addressed in more detail in
Section 3.3. As we shall see in Section 5, this
approach supports much higher retrieval effec-
tiveness compared to that used in Suyoto and
Uitdenbogerd [2007].

3.3 Alignment

In the alignment phase, dynamic program-
ming is used. The dynamic programming

3



Figure 3: This melody is represented as “C G A C G# B D” using limited absolute pitch standardisation.

Figure 4: This chord is represented as “F A C” using limited absolute pitch standardisation.

technique on pitch sequences has been previ-
ously used in various works in symbolic mu-
sic matching [Dannenberg et al., 2003, Suyoto
and Uitdenbogerd, 2005, Uitdenbogerd and Zobel,
1999]. It has also been used for audio [Aucouturier
and Sandler, 2001, Foote, 2000].

In this work, the longest common subsequence
(LCS) [Gusfield, 1997, pp. 227–228] score between
a query and an answer is used as a candidate score.
The query is then transposed by one semitone.
This is done 11 times. For example, if the query
is “C E G C”, it is transposed to “C# F G# C#”,
and then to “D F# A D”, up to “B D# F# B”. The
answer remains untransposed. The transposition
causes the answer to be scanned 12 times. This re-
sults in 12 candidate scores. The score with maxi-
mum similarity is picked as the final score for the
answer. Mathematically, if S(q, a) is the similarity
between query q and answer a:

S(q, a) = max
s

(L (t (q, s) , a)) (1)

where t(q, s) is a function transposing q by s semi-
tones (s ∈ {0, 1, 2, . . . , 11}), and L(T, a) is the
longest common subsequence score between T and
a. The full (unoptimised) algorithm is specified in
Algorithm 1.

4 Experiment

Our experiment is intended as a direct comparison
to our previous work [Suyoto and Uitdenbogerd,
2007], therefore the collection and the queries are
the same. In brief, the previous technique (SBDG)
involved the use of global alignment on a relative
pitch representation that had initially been filtered
to remove high pitch and low velocity notes. For
further details, readers are redirected to it for more
details.

As the similarity measurement, we use Equa-
tion 1. We also use the following similarity mea-
surements:

SI(q, a) =
S(q, a)

|a|
(2)

SK(q, a) =
S(q, a)

|a| loge |a|
(3)

Sy(q, a, y) =
S(q, a)

logy
e |a|

; y = {1.0, 1.1, 1.2, . . . , 2.0}

(4)

5 Results

To measure the effectiveness of our approach,
we use the widely known precision information
retrieval measure [Baeza-Yates and Ribeiro-Neto,
1999, pg. 75], which is defined as:

P ≡
|Rel ∩ Ret|

|Ret|
(5)

where Rel is the set of relevant answers and Ret
is the set of retrieved answers. For presentational
purposes, we use PN (precision at N retrieved an-
swers, N = |Ret|); N ∈ {1, 2, 3, . . . , 20}.

The results for our experiments using S(q, a),
SI(q, a), and SK(q, a) similiarity measurements are
shown in Table 1. The results for Sy(q, a, y); y =
{1.0, 1.1, 1.2, . . . , 2.0} are shown in Table 2. It
shows that Sy(q, a, 1.7) is the most effective simi-
larity measurement when the desired answers are
aimed to be in top 20, although y = [1.3. . .2.0]
is approximately as good. The performance of
Sy(q, a, 2.0) is remarkable for retrieving the cor-
rect answer in the first place. A visual compar-
ison between the measurements and the SBDG

method [Suyoto and Uitdenbogerd, 2007] as the
baseline is depicted in Figure 5.

Using the LCS score only (the S(q, a) similarity
measurement) results into poor retrieval effective-
ness. This is because some songs in the collection
are significantly longer than others, and thus need
to be represented using more symbols. As the LCS
algorithm does not penalise mismatch, insertion,
and deletion operations, the longer sequences can
more easily yield high scores. Therefore, the long
sequences cannot be distinguished from the actual
correct answer(s). It is also confirmed in our exper-
imental results that long sequences easily move up

4



Algorithm 1: The algorithm to align two melodies p and q.

1. Construct a matrix with (|p|+ 1) rows and (|q|+ 1) columns. Let us call a cell Di,j.

2. D0,0 ← 0.

3. Di,0 ← 0; i ∈ 0 . . . |p|.

4. D0,j ← 0; j ∈ 0 . . . |q|.

5. For s in 0 . . . 11:

1. q′ = t(q, s)

2. For i in 1 . . . |p|:

1. For j in 1 . . . |q|:

1. Di, j =

{

Di−1,j−1 + 1 ; si−1 = q′i−1
max(Di−1,j, Di,j−1); si−1 6= q′i−1

.

3. Ls = D|p|,|q|

6. Return maxs(Ls).

Table 1: 〈PN〉 (mean precision at N) values for similarity measurements S(q, a), SI(q, a), and SK(q, a).

N S(q, a) SI(q, a) SK(q, a)
1 0.029 0.000 0.000
2 0.015 0.000 0.000
3 0.010 0.000 0.000
4 0.007 0.000 0.000
5 0.006 0.000 0.000
6 0.010 0.000 0.000
7 0.013 0.000 0.000
8 0.011 0.000 0.000
9 0.010 0.000 0.000

10 0.012 0.000 0.000
11 0.011 0.000 0.000
12 0.010 0.000 0.000
13 0.011 0.000 0.000
14 0.010 0.000 0.000
15 0.010 0.000 0.000
16 0.011 0.002 0.000
17 0.010 0.002 0.000
18 0.010 0.002 0.000
19 0.011 0.002 0.000
20 0.010 0.001 0.000

to the higher ranks. Therefore, a penalty should be
applied to long sequences. This was the rationale
for testing various similarity measurements which
normalise the LCS score with a function of answer
length.

As shown in Table 1, our experiment with simi-
larity measurements SI(q, a) and SK(q, a) did not
result in higher effectiveness, however. On the
contrary, the effectiveness is much lower, not be-
ing able to retrieve any correct answer in the

top 15. On the other hand, Table 2 shows that us-
ing Sy(q, a, y) yields high effectiveness, as is clearly
demonstrated in Figure 5.

Symbolic queries that are optimised for listen-
ing are as effective in retrieving answers as those
optimised for printing. This is normal, as there
is not much difference between the two versions.
Moreover, the LCS algorithm does not penalise ex-
traneous notes, and they can actually increase the
matching chance.
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Table 2: 〈PN〉 (mean precision at N) values for Sy(q, a, y).

N y
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1 0.676 0.676 0.706 0.765 0.794 0.794 0.794 0.794 0.765 0.794 0.824
2 0.529 0.529 0.559 0.574 0.603 0.559 0.574 0.574 0.574 0.574 0.574
3 0.490 0.490 0.500 0.500 0.529 0.519 0.500 0.500 0.490 0.500 0.510
4 0.375 0.382 0.390 0.390 0.404 0.404 0.397 0.390 0.382 0.390 0.382
5 0.300 0.306 0.312 0.318 0.324 0.324 0.324 0.312 0.312 0.318 0.312
6 0.250 0.255 0.265 0.275 0.275 0.270 0.270 0.270 0.275 0.275 0.260
7 0.214 0.219 0.227 0.235 0.235 0.231 0.231 0.231 0.235 0.235 0.227
8 0.188 0.191 0.199 0.210 0.206 0.202 0.202 0.202 0.206 0.206 0.202
9 0.167 0.170 0.176 0.186 0.183 0.186 0.183 0.180 0.186 0.186 0.180

10 0.153 0.153 0.162 0.168 0.165 0.168 0.165 0.165 0.168 0.168 0.162
11 0.139 0.139 0.147 0.153 0.150 0.153 0.150 0.150 0.153 0.153 0.147
12 0.127 0.127 0.135 0.140 0.137 0.140 0.140 0.137 0.140 0.140 0.137
13 0.118 0.118 0.127 0.129 0.131 0.129 0.129 0.127 0.129 0.129 0.127
14 0.109 0.111 0.117 0.119 0.122 0.119 0.119 0.119 0.119 0.119 0.117
15 0.102 0.104 0.110 0.112 0.114 0.112 0.112 0.112 0.112 0.112 0.110
16 0.096 0.097 0.103 0.105 0.107 0.105 0.105 0.105 0.105 0.105 0.103
17 0.090 0.092 0.097 0.099 0.100 0.099 0.099 0.100 0.099 0.099 0.097
18 0.085 0.089 0.092 0.093 0.095 0.093 0.093 0.097 0.093 0.093 0.092
19 0.082 0.084 0.087 0.088 0.090 0.088 0.088 0.092 0.090 0.088 0.087
20 0.078 0.081 0.082 0.085 0.085 0.084 0.084 0.087 0.085 0.084 0.084

Queries B1010_B1 and B1010_B2 [Suyoto and
Uitdenbogerd, 2007] perform poorly compared to
other queries. There is only one target answer
for both queries, in which both parts of the song
are combined into one song file. This makes the
lengths for the two queries disproportional to that
of the answer.

The results also demonstrate that for this
task, notes should be represented by absolute
pitch. Comparing to the results in Suyoto and
Uitdenbogerd [2007], relative pitch representation
is lower in effectiveness, as the noise captured in
the transcription often diminishes the reliability of
an interval-based representation.

6 Conclusions and Future Work

This report explores the use of the LCS algorithm
to match manually constructed queries and audio
transcription. Our experimental results demon-
strate that:

• It is possible to match audio with symbolic
music.

• Representing notes by absolute pitch is more
suited to this task than using relative pitch.

We plan to test our approach on other genres of
music to see the scope of its applicability.
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